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TECHNICAL NOTE 3737

THE MOTIONS OF ROLLING SYMMETRICAT MISSILES
REFERRED TO A BODY-AXTS SYSTEM

By Robert L. Nelson
SUMMARY

The linearized equations of motion have been derived for a rolling
missile having slight aerodynamic asymmetries. Time histories of rolling-
missile motions referred to a body-axis system have been prepared to show
the types of misslle motions that can be encountered. The motions
resulting from a trim change and a pulse-rocket disturbance are shown to
be determined mainly by the ratio of rolling velocity to pltehing frequency.

Finally, the derived equations are used in establishing a technique for
the reduction of rolling-missile oscillation data. It is shown that the
eerodynamic derivatives can be obtalned from flight data if four accelera-
tions are measured. The method is applied to the results obtained from a
flight test of a missile configuration.

INTRODUCTION

The problem of the dynamic stability of missiles has been attacked by
two separate basic treatments. First, in the case of roll-stabllized mis-
silles the problem has been attacked by means of the classical airplane-
stability theory developed by Lanchester (ref. 1), with no need for modifi-
cations. The development of the theory for rolling symmetrical missiles
has followed from the baslic ballistic theory of reference 2. Nicolaides
(ref. 3) and Charters (ref. 4) have more recently expressed the dynamic-
stability equations for rolling symmetrical missiles in terminology more
familiar to the aerodynamicist. However, the impetus for these works was
provided by studies of missile motions 1n aerodynamic test ranges where the
model position and angular orientations were measured at a series of sta-
tions. As a result the equations derived were referred to space axes. In
the case of free-flight rolling missiles equipped with internal instrumen-
tation, the equations of motion must be referred to a body-axis systenm.
Phillips in reference 5 presented a simplified analysis of the motion of
rolling airplenes (and in a limiting case of symmetrical missiles) based on
a body-axis system but included only the criteris for stebility. Bolz in
reference 6 derived more completely the equations of motion for a rolling
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2 NACA TN 3737

symnetrical missile referred to a body-axis system but aga.in discussed
only the criteria for stability.

In this paper the equations of motion referenced to the body-axls
system are again derived, and assumptions similar to those of Nicolaides
(ref. 3) are used. Some of the possible missile motions are shown,
together with the motions to be expected from certain forcing functions.
Finally, the derived equations of motion are used to establish a techni-
que for the reduction of oscillation data to cobtain aerodynamic deriva-
tives. The method is applied to the experimental results obtained from
a rolling symmetrical missile.

SYMBOLS
a resultant acceleration
a, b complex roots of differentisl equation for ¢
ay, ay, ag, accelerations parallel to X, Y, end Z axes ’
respectively
A, B, C constants of differential equation for ¢ .
Ap body frontal area, sq ft
Cn pitching-moment coefficient, -3
qAF
Do " S
Cag = o
> 8d
2v
Cmé = -gcé—m, sec
°m¢ = Ly , Sec
B ofop”
Cy normal-force coefficient (-Cg)
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Cn
acn
‘g T3
oc
. =B
Crj 5
oC

yawing-moment coefficient,

q_AFd.

Cn¢ = -a_ﬁ%a,-’ sec
o

¢, =_Cn
~

Cr magnitude of resultant vector
Cr,0 =Ry + Ro
. R
Cy lateral-force coefficient, b &
dAp .
CY, o lateral-force coefficlent due to asymmetry
oy, = X
8~ 3
Cg vertical-force coefficient, —=
gAp
Cz,0 vertical-force coefficient due to asymmetry
oc
Cz,, = —Z
da,
d body diameter, £t
Fx, ¥y, Fy aerodynemic forces parallel to X, Y, and Z axes,
respectively
I moment of inertia ebout Y- or Z-axis, slug-:E"l'.2
' = —;[—, sec2
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Iy moment of inertia sbout X-exis, slug-ft2
k="1-F
Ry + Rp
k radius of gyration, ‘/2-1271-1, £t
1 . pulse-rocket moment arm from center of gravity, ft

My, My, My aerodynsmic moments about X, Y, and Z axes, respectively

m mass, slug
m' = —, sec
QAR
P pulse-rocket tota]: impulse, lb-sec
P rolling velocity, ra.dians/ sec
q , dynemic pressure, lb/sq £t
Ry, Ry initial magnitude of rotating vectors
8 slppe
t time
u component of free-stream veloclty in X-direction,
ft/sec (u =~ V)
v free-stream velocity, ft/sec-
X, ¥, 2 coordinate axes '
Xq longitudinal center of pressure of asymmetric force, ft
X1s Xp longitudinal displacement of accelerometers, ft
Y1, Yo la:beral displacement of accelerameters, -:E't

2y, Zp vertical displacement of accelerometers, ft
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o angle of attack, radians
B angle of sideslip, radians
£ =B+ ia

De

pitching velocity, redians/sec

>

angular orientation of resultant vector, radians

Ao = V] = Vvp, radians

Ao nonrolling damping constent, 1jsec
AN damping constant due to roll, 1/sec
1! relative~density factor, m
. pApd
Vi, Yo initial angular orientation of rotating vectors , radiens
P air density, slugs/cu £t
¢ rolling velocity, radians/sec
¥ yawing velocity, radians/éec
@, basic oscillation frequency, radians/sec
Fa%i ) component of total pitlch frequency resulting directly
from roll, radians/sec .
Q=0+ iy

Dots over symbols indicate time éerivatives. :
STATEMENT OF THE PROBLEM

The motion of a symmetrical missile configuration referred to a body-
axls system-is complicated by rolling motion even for the case where the
rolling velocity is a fraction of the missile pitching frequency. Unlike
the motion of a slowly rolling airplane-like configuration which tends to
continue in a direction normal to the wing plsne, the motion of a symmetri-
cal missile configuration disturbed in one plane "in space tends to remain
in one plane in space. (The restoring force for the airplané is normsl to
the plane of the wings, whereas the restoring force for the missile is
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mainly independent of roll attitude.) Thus for a missile having acceler-
ometers mounted at the center of gravity the first consequence of the
rolling motion is the appearance of a roll effect on the normal and
transverse accelerometer traces. An exsmple of this effect for the normsl-
accelerometer trace is shown in the following sketch: .

ia.=a.Y

Accelerstion

This roll effect is determined mainly by the ratio of the rolling
velocity to the oscillation frequency, or the ratio of pd/2vV +to a)od/EV.

At very low values of pd/2V corresponding to very small fin misaline-
ments, this ratio can become large if the missile ascends to & high alti-
tude, inasmuch as- pd/2V is independent of altitude while and/2V

decreases wlith increasing altitude.

If the missile motion were in one plane in space and the roll rate
small, the motion could be analyzed simply by working with the resultant
of normal and transverse accelerstion, and applying the ususl data-
reduction techniques for oscillating nonrolling models (ref. 7). However,
since the missile may not remain in one plane in space and gyroscoplc
cross-coupling can have a large effect on the model motion, an analysis
of the motions of rolling missiles is necessary in order to interpret
eand reduce the flight test data.

DEVELOPMENT OF EQUATIONS OF MOTION

The linearized equations of motion for a symmetrical missile (90°
rotational symmetry) are referred to the body-axis system of the following

sketch:
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(B +§ - fa) = Zpy

m(&,-é+¢.5p)=zFZ
IJ=Z'MX
B - (I - ) =z,

W+ (I - ) = oy

T M A .

U = comnfiortend of free-Jfeam
Ve’wt“y it X-divzchn

Rt e
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If the forward velocity is assumed to be constant (zev.x 0) and the

rolling velocity also to be constant (¢ = 0), the equations reduce to the
following four:

ma(f + ¥ - fa) = TPy (1)
m(s - & + #B) = 5Fy (2)
1 - (I - IR)PF = oMy (3)
Ty + (I - TP = oMy ()

In order to reduce the number of equations to two, eguations (2) and (4)
are multiplied by i = ‘/-l and added to equations (l) and (3), respec-
tively, to obtain

mu [(f + 1&) - 1(6 + 1) + 1§(B + 1a)] ==(Fy + iFy)

I(6 + 1¥) + 16(T - Tx) (6 + 1¥) = Z(My + iMg)

Iet t=B+1a, Q=0+ 1}, and @ = p so that these equations become:

 + ipt - iQ = Z(Fy + 1) :miFZ) (5)
) é+1p(1--IT3§)9=Z—(E’%iM—Z—) . (6)

Allowing small asymmetries (resulting from a fixed control deflection for
exsmple) which do not violate the agsumption of symmetry and assuming that
the aerodynamic forces due to ¥, 6, and ;3, and forces due to gravity
are negligible in comparison to the forces due to angle of attack and
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sideslip permits the force equations to be written as:

It

ZFY CYBqAFB + CYOqAF

A

CZa'q_AFtI + CZOQ_AF
Then, multiplying the second equation by i and adding to the first gives

Z(Fy + iFy) = qAp (CYBB + 1czaa) + aap Gy, + 10z, )

From the asgumption of symmetry,

CYB = CZG, = _chx.

The derivative CNa, rather then CYB or CZa. is used hereinafter, since

the force due to a positive angle of attack is usually considered positive.
Then, ’

Z(Fy + iFp) = Oy ahp(B + 1a) + aAp(Cy, + 1z)

Iet m' = é‘ii; then, inssmuch as ¢ = B + ia,
F

Z(FY + in) _ CNCLg . CYO + iCZo
mu B m' m'
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If no moments from asymmetries are allowed to result from camber
effects and if the moments due to O, V¥, and 53 are assumed to make a

significant contribution to the total moment, the moment equations can
be written as:

IMy = CmquFd“ + CméqAFdé + CmﬁﬁqAFd;lp - CzoxoqAF
My = CanAFdB + cn\l;qAFd’r' + Cnéqudefa. + GYoxoqAF

Again, multiplying the second of these equations by i and adding it to
the first gives

Z(My + iMg) = qApd [:(Cma,“ + icnﬁﬁ) + (Cméé + icnti‘i') *

(cm¢é¢p + 1cn¢u¢a) - (CZo - 1ch)x_d_o] :

With the assumption of 90° rotational symmetry,

-
——————— e — - -
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1
Then
= (My + iMZ)’ = -iqApd ‘:<Cm“ + 1cn¢aé$>‘(s + 1a) +
1cmé(é + ﬂ;r) - (ch + 1020)%]
Also, with £ =8 +1a, ©=6+ 1}, @ =p, and I' =E_I:x[F_d’
£ty + 1Mp) _ (8)

. - I—i,[@mm + ian‘zm)Q + 1Cp0 - (ch + 1cZo)’;—°:|

Equations (5), (6), (7), and (8) combine to give two linear differential
equations in terms of the two unknowns { and Q. The following -equa-
. tlon in { results:

t+af-Bt=c (9)
* where
Cy 3 T '
A=T--CI-T,'1+1P<2-TX) (10)
S T e
A 5
C - c .
B=Cm(l+i n¢a,p+P2é__I_X)+cme N_ip(CNG_c_mg_IX_CNG)
I I I' m' m' I I m
\/\‘-—-J NP

Y . IS (11)

[N dmr A e mtem wmmp e ——— e Lo -
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The solution of the differential equation is:

where:

ivl
1 and Rle

sketch.

iv
£ = gtrim + Rye 1 eat Raeiv2 bt

A+ a2 4+ 1B

2
b o A= JA2 + 4B
2
" bipig = “C/B
iv
and R2e 2 are initial conditions as shown in the adjacent
ix
2
v
el L
QY
Vi
1 B

Both a and b are complex numbers, with the complex radical
\’A2 + 4B, and can be broken down into a more usable form to
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13
- a =27, + OA+ i(ap ~ &w) .
'b=7\o-A7\-i(a>o’+Aw) .
where-'bhe new concepts A,, AN, «,, and Aw are defined by
%—--21—(%“#-2”?) <—£2f_ (13)

\m VT I
A D Ve

3 AY

2 - (D).

A¢n=p(-IEx) =B (16)

From the new equations for & and b, -the following expression can be
obtained:

-t s r et |:7\°+A7\+i(w6-m§rt+ rpet2e o1 (a+An)]t

£ = tyg + By (Aot 1 [(wg-da)bev} Rze()\o-m\)te-iﬁ%m)t_v N

(17)
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Inasmuch as a complex number represenits a vector which can be expressed
in the form 2z = a + ib = Rel® , Where R represen‘f% the )%agnitude of the
vector and © gives the angular oriemtation, Rje’ © and

-AAN)t
Rae(?\c‘ ) represent the demping with time of R; and Ry, respectively;
and (wy -~ Aw)t + vy and (o + Aw)t - vp give the location of the vec-
tors at any time. These 'rela.tionships are shown in the following sketch:

i(a - atrim)
iq SN
75
X Yy X% % Ve
> /I e \
\\ (‘\0
@o N
$€ . @ By - Y‘r&e
(G vy
! B - BPtrim
U
B

Thus, the result'ing motion is given by two damping vectors revolving in
different directions and at different rates gbout the fixed trim.

The time histories of o and B can be obtained from equation (17)
by using the relations el® = cos 8 + 1 sin @ and £ =B + ia; then

(B - Brim) + (e - oprin) = Rle(}\°+&)t cos [(ao -~ Aw)t + v +
e(7\o-A7\)t cos Kab + M)t - v2] +

i{Rle(?,\o-"A)\)t sin [(coo - M)t + vﬂ -~

(Ao-2N)E
e

Ro sin Ewo + M)t - va]} (18)
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and (7\0+A7\)t
B ~ Bipqpm = Rz cos[(mo - M)t + v]J +
e(kOW)t cos [(a)o + M)t - va:l
@ = Qppim = Bleé}\om)t sin Emo - M)t + v]_] -
Rae(?\o-.m\)t sin [(mo + M)t - va:l (19)

Thus the oscillation about trim of either « or B is made up of two
sinusoidal components which can have different initial magnitudes

(R # Ro) and which can demp at different rates (AN £ 0). When AA

approaches the value of A,, one of the component oscillations damps
rapidly while the other component damps slowly.

Rather than use equations (18) end (19) in the discussion which
follows, use will be made of the resultant angle of attack from trim and
the angular orientation of this resultant. From equations (18) and (19)

(B - Bti‘im)z * (“' - “trim)z = Rlaea(w)t + Rgaea(%"m‘)t +

2R132e27\ot cos (2%1‘. + vy - va) (20)

@ = Gy _ Ble(M)t sin Kﬂb - M)t + v]] - Ran\o-A?\)t sinBab + M)t - v21
B = Birim Rle(w)t cos {(a)o - M)t + v]] + Ree(.)‘o—N‘)t cos [(ub + M)t - va]

(21)

One interesting point should be made concerning equation (20) . The roll

rate p eppears as an important quantity only in the quantity AA, which
is small compared with A, at low roll rates. Thus, to the first order,

a change in the rolling velocity will not influence the resultant
osclllation time history, but will only influence the angular orientation
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of the resultant. Therefore, the assumption that the rolling velocity is
constant may not be too strict a limitation on the validity of the
analysis at low roll rates.

The sections which follow discuss the motions of rolling missiles
referred to the body-axis system and a technique for reduction of data of
missiles employing body-axis instrumentation. In this system forces
measured at the center of gravity more conveniently describe the motion
then would the angle of attack, which cannot be measured at the center of
gravity and must be corrected to the center of gravity.

From the assumption mede earlier that aerodynamic forces due to é,
¥, and ¢ are negligible, the equations describing the force time his-
tories differ from derived equations only by a constant. If the forces
due to 6, VY, and ¢ are not negligible, the new equations describing
the force time histories differ from equation (17) by the initial condi-
tions Ry, Rp, v;, and vo.

In the equations and figures to follow, use is made of the symbols
as defined in the following table, for either angle-of-attack and side-
slip instrumentation or for force-measuring instrumentetion. The coeffi-
cient Cy, which is positive downward, has been replaced by -Cy. )

Symbol a and B system Cy and Cy system

x| - P+ o - ) | (o - O, eraa)® + (o - O raa)

2 2
CR,trim J"'trima + Bipin® \/(Cy,u-im - C¥,o) + (CN,'brim - cN,o)
A an~l & = Ctrim - tan-1 N = ON,trim
B - Birim Cy - Cy,trim
Atrim tan-l ﬁ € - 'ban'l CN’trim - CN,O

Pirim Cy,trim - Cy,0
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DISCUSSION OF THE DERIVED MOTION

In the discussion to follow, motion is intended to mean the missile
motion as reflected by the resultant angle-of-attack or resultant force
time histories.

Rolling Trim .

By use of the equation { ., = -C/B, the rolling trim referenced to
the nonrolling trim can be expressed as: o

N RO
S T A R
(22)
Mtrin= (Am;)g, = ay + tanl —— 2%(%f ) - (23)
| - @ |- @]
N = [1+ %)u(l _ %&)252)—3')2 (24)
(e 5 |

Ay = tan~l - ‘2(%)2(1 - ITX)Ia’—% kas)
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The quantities N and Ay are independent of the stability roots Ao, |
AN, oy, end Aw. ‘In addition, N and Ny are independent of velocity,

and independent of Mach number (if pd/2V, cmq, and x,/d are constant),
and N is influenced slightly by altitude changes (through the

Cmq/p. ‘term).

Some examples of rolling-trim magnitude and orientation are given in
figures 1 and 2 for a particular missile configuration. The assumed
aerodynamic and mass characteristics listed in the figures are representa-
tive of a four-fin missile of high fineness ratio. The resonant condition
at Amfay, = ¥1 1is shown in figure 1. An indication of the magnitude of

the rolling trim at resonance for low values of damping is also shown.

Figure 2 shows that the trim rotates through 180° as the resonance range
is passed.

In order to give a better idea of the importance of the regonance range -
and the associated problem of avoiding resonance, the equations for 7\0/%
and Am/a, are first written as follows:

LY (26)
oy

m
Lﬁ’
e
i
RS
(=]
&
4|_| N
+
+
&
N
HRE !
L~
*
]
E’EI"
Gl
+
@lp
A
o o

Bl N3 -
[\
. P2
% : f n
= @ L TR e
BT ( 9*’9“‘”* ﬁ ﬁ:%( ’)atr |
SR |

L 2N
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Note that both equations (26) and (27) are functions of only the mess
characteristics of the missile, the aerodynemic characteristics, and the
altitude (through the relative density factor) and are independent of
velocity, except indirectly through the effects of Mach number and
Reynolds number on the aerodynamic derivatives.

Figure 3 shows the variation of A,/a, and Mnfa, with altitude
for a high-speed missile. The asymmetries causing the roll were acci-
dental and probably on the order of what can be expected with quality
construction of a finned missile. The curves show resonance reached at
an altitude of 93,000 feet and at 7\0/‘”0 = -0.022. Passing through

resonence &t such a high altitude may be objectionable; for, even though
the resultant force may be less than at a lower altitude, the greatly
increased trim angle of attack may be such as to put the missile in an
unstable angle-of-attack range, which could lead to destruction of the
missile or at least to a significant change in flight path. In addition,
if the flight path is such that resonance occurs near zenith, then the
resonance range will be passed through slowly and large changes in flight
path can occur. It may be that, for certain applications, the fins should
be deflected, so that resonance occurs at & predetermined low altitude.
Although the motion about trim is not greatly affected by changes in
rolling veloclty at low roll rates, this result does not hold true for
the trim if changes in rolling velocity take place near roll resonance.

Mottion About Trim

Setting zero time at an,oscillation peak (vl = v2) and replacing in
equations (20) and (21) the initial conditions R;, Ry, v, and vo by
the following:

_R -R
' Ry + Rp

yield the following simplified equations:

2 2t '
<CCR > =€ 10 El + K)Ze2N (1 - k)2 2N L o(1 - K2)cos 2wo€l (28)
R,0

e ————p o war A — v = e et - —
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(1 + K)AN | (1 - K)eBNE

% t 2
(1 + K)eBM 4 (1 - K)e-BNE =% (29)

A = Ay - Lot + tan-l

A better insight into the physical significance of the quantity K is
obtained from the equation for dA/dt: ’

_ mo[(l + K)2e28N6 | (7 K)2e'24lt;|+ 2(1 - K2)A\ sin 2apt

A Lo
at (1 + K)%PANE o (1 - k)2e28Mt . 2(1 - K2)cos 2apt
- (30)
At t=0
aa =
(88), o =m0 - e

The value of K is thus related to dAfdt at t = 0. Now the motion
about trim referred to an exis system in space, which translates, pitches,
and yews with the body-axis system but does not roll, is related to the
motion with respect to & body-axis system by the following equations:

S
CR:° space CR:O body axes

Agpace = Mbody axes + PP

since the body-axis system rotates at the roll rate p. Thus, the motion
in space is determined by the initial conditions Ao and da/dt at
t = 0. Also,

dAspace R Ix
dt Jt=0 2 I

I
For values of -;'-p TX that are small

K= dAspa.ce)
o at /4=0
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Also, for the condition of zero roll rate (p = 0),
g = L {body axes 1 (Yepace)  _ 1 (Yspace
(45 at t__o (1)0 d.'b t:g (Ve at +=0
b

-Thus, from this, the motion from trim In space is nearly independent of
the roll rate at low roll rates and low values of IX/I. Since the

motion in space 1s determined mainly by the value of K, the quantity K
is called the "space-motion factor".

Figures 4 and 5 present some typical motions sbout trim (Cr against
A with time varied) given by equations (28) and (29) for variable values
of K and Aw/w, and for zero damping (A, snd A\ = 0). The effect of
Ao on the patterns is mainly to reduce succeeding peaks. The effect of

AN\ is discussed in a subsequent section. The number of cyeles to com-
plete the pattern are also shown.

Some c'>f the important characteristics of the motions shown in fig-
ures 4 and 5 are as follows:

(1) For Awfay, = 0, or for the motion in space, the pattern is

elliptical, varying from a line (motion in one plane) for K =0 to a
circle for K = %1,

(2) Whether K i1s positive or negative can be easily detected,
for Cgp circles the trim center for negative values of K, but does not
for positive values of K.

(3) An indication of the approach of resonance is shown by the
tendency for the loops to close on each other and become coincident for
a glven value of K.

(4) Whether the missile is above or below roll resonance is imme-
diately determined, since the motion above resonsnce is characterized by
inside loops, and the motion below roll resonance by outside loops.

(5) In order to determine the value of the rolling trim from a plot
of Cy against Cy, a low value of K is desirable.

As indicated, a plot of Cy agalnst Cy (or Cr against A) will
yield immediately valusble information sbout the motlion.

e m e m e s — mwm v e r— % —— e —— - — e e ——
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Rolling influences the damped motion through the term AA. From
equation (28) the envelopes of CRr are:

Clg;m - 200 b e s (1 - e (32)

,O

Cg;’"i“ ) e7‘2°‘° [(1 + K)NE _ (1 K)e‘N“j (33)
40

Typical oscillation envelopes of CRr below divergence (A< 7\0) are

shown in figure 6. The figure shows that the effect of an increase in AM
tends to demp the osecillation of Cr more highly, except for positive
velues of K. For positive values of K +the oscillation becomes less
damped. with an increase in A7\/7\o, up to the time where cR,min = 0, But

with further increases in time, the oscillstion becomes highly damped.
Whether ANA, is positive or negative can be obtained from the following

equation for AMNAo:

1L 1 C
N e %acmf) (5f ™ to ()
%o 1 - .Il Ng, = > ) 1 - E.[.}.{. Cn,, - > “o
i) A

For conventionsl missile configurastions Cmq is negative and

1

x\2
2()
of greater megnitude than Cy_; as a result AN, ususlly has the same

sign as Aw/fay.

I
I
Since the limiting magnitude of Aw/wm, is —-Iﬂ and
X
S er

+ 1
T
—1
Gl

can be between £1, AMNAo will never exceed tl, if
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Cnpa' is negative. However, a positive value of CnPa, can lead to

instability at hfl.gh roll rates or high altitudes, or both. However, the
instability resulting from a positive cnPa. will be serious only if it

occurs at altitudes where significant dynamlc pressure exists, since the
rate of divergence is negligible at extremely high altitudes. Thus,
knowledge of the value of Cnm is most important for missiles which

roll rapidly.
Another way of visualizing the effect of AN on the motion is
obtained by finding the variation of K from peak to peak of the

oscillations or effectively setting the initial conditions and zero
time at succeeding peaks. Then, from equations (30) and (31),

Ky = (Lr KN - (1 - Kle=ON
(1 + K)eANE 4 (1 - K)e BN

Since eN‘t or e"A}‘t—>0 a8 t—ow, Ki—*l as- t—p». Thus, AA

causes the motion to tend toward that given by K = tl1 in figure 5.
Figure 6 is in agreement with this concept. Of course, at low roll rates
this trend is completely obscured since the oscillation 1s, for all prac-
tical purposes, damped out by the time the influence of AA is felt.

RESPONSE OF ROLLING MISSILES TO FORCING FUNCTIONS

Thus far, motions resulting from variable initial conditions have
been discussed. Remaining to be determined are the initial conditions
(and as a result the motions) that can be expected from given disturbances.

Response to a Trim Change

Assume that, at the time of the instantaneous control deflection, the
missile was at the initial trim and the oscillation gbout this initial trim
had completely damped out. The initiel conditions are referred to an axis
system at o - Qppipys B - Byrim &bout which the oscillation takes place,
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as indicated on the following sketch:
@ = Qfrim

These conditions are expressed by

(€ - Strin)y o = AR, trine

g-b=0=o

Where

&R, trim = \/(CR,trim)a + (fR,trim)c',a ~ 2CR,trim(cR,tr:Lm)o cos AAgriny

and

-1 (CR,trm)o 810 Appim o - CR,trim 510 Agrip

A, = tan
(Cr,trim)o ©°8 Atrim,o - OR,trim €08 Atrip

Substituting these initial conditions into equation (17) gives the
following values for R;, Ry, and vy - vq:
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Ry ) \I(‘”o + Aw)2 + (N - AN)2

- _ ACR,'l'.rzi.m 5 "1)02 + A7\2

Ro =‘Kmo-Am)2+(7\0 + AN)2

AR, trim 2 o2 + 8

A (wp - ) 1 (ay + Aw)
~(No +: AN) -(Ao - AN)

Vo - V] =x - tan
Neglecting AN gives as the meximm value of Cg, from equation (20),
+*
CR,max = Mo (Ry + Bp)
gt the time %, which is given by

w2~ V1
2mo

Assume that A, and AN are small quantities compared with a, and Awm.

For Aw <y,

For Aw > wq,
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.
CR,max = @, 2R, trin®

The value for K is

_B "R
Ry + Rp
Then, for Aw< @,
K =40
g, -
and for Am > a,
1
K =
Dofwg,

These results are plotted in figure 7. It should not be inferred from
figure T that the value of cR,max increases with an increase in Aw/mo

above Awfay = I, since CR poy 1s referemced to ACR grip, Which drops

off repidly with an increase in Amfm, above Awfao = 1, as is shown in
figure 1. Note that, since the space-motion factor K and Aw/wo are of

the same sign, only the motion patterns for positive values of K in fig-
ures 4 and 5 are possible.

Response to Pulse-~Rocket Disturbance

A free-flight missile can be conveniently disturbed from its equi-
librium conditions by firing a small rocket charge mounted normal to the
longitudinal axis and forward or rearward of the center of gravity. Such
a rocket charge is referred to as a "pulse rocket." For this simplified
analysis the rocket thrust is assumed to be constant. However the pulse-
rocket total impulse (area under the curve of thrust plotted against time)
and the pulse-rocket burning time, rather than pulse-rocket thrust, are
used as variables. By use of methods similar to those used in the section
"Development of Equations of Motion', solutions have been obtained for the
peak value of CRr and the value of K at the peek, for cases where the

veak CR occurs before rocket burnout and after rocket burnout. The
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results are presented in figures 8 and 9 for the special case of zero
damping (Ao = 0, AA = 0).

Figure 8 shows the large effect the roll rate cen have on the peak
value of Cg, vhere Cg 1is indicative of the resultant angle of attack.
Figure 9 shows that the space-motion factor K rapidly approaches 1l at
a given pulse-rocket burning time, as Aw/mo increases in magnitude.
Both figures show the desirsbility of e very low pulse-rocket burning
time, first in order to obtain a high pesk CR occurring after pulse-.
rocket burnout, and second in order to restrict the motion to nearly
one plane in space.

APPLICATION OF EQUATIONS OF MOTION TO ESTABLISHMENT OF A

TECHNIQUE FOR REDUCTION OF OSCILLATION DATA

The procedure used in applying the equations of motion for the purpose
. of reducing the oscillation data is presented in two parts. The first part
deals with the determination of the stability roots, Ay, AN, ay, and

ANy, and the second part deals with a method for obtaining the static and
dynamlc gserodynamic derivatives from the stability roots. It 1s shown that
the derivatives can be found by measuring four quantities in addition to
alrspeed and atmospheric conditions. Of course, the accuracy of the deriv-
atives obtained depends, to a large extent, on how well the assumptions
set down in the previous analysis are satisfied.

Determination of Stability Roots

Consider a rolling missile employing instrumentation at the center
of gravity for measuring the normal-force and side-force coefficients.
If the missile is disturbed in such a manner that the space-motion fac-
tor K 1s near zero and is out of the region of roll resonance so that
the trim does not wander in megnitude and direction, plots of Cy egainst

Cy (or CRr against A) similar to those shown in figure 4 and 5 can be

obtained. A typical experimen’ta.l plot is shown in figure 10. With the
low values of K, a falrly reliable trim center can be assumed.

The quantity Aa)/ab is readily found by measuring the angle between
adjacent peaks on the plot of Cy against Cy. (See following sketch.)
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t Cx - ON,trim
— .
I
[ Cy - Cy,trim

This sketch can be used in conjunction with equation (29) to obtain
A = Ao - Loty
Bp = Ao - Lusty + =
Ny - M = Doty - ) + x

and since t, &and t; are measured at adjacent oscillation peaks

-t =L
t2 -t =
and
Moy _B2-HM
&0 -3 - . (35)

Calculation of Am/wo for all adjacent oscillation peaks gives an indica-~

tion of the validity of the assumption that the roll rate p is constant.
Also the accuracy of the calculated Am 1s affected by the correctness of
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the assumed trim. The following table presents the calculated values of
Awfay, for the experimental plot of figure 10:

Peaks Ao/ ay,
1 to 2 0.301
2 %03 .325
3 to k4 .282
 t0 5 .308

The smgll variastion of Am/wo upholds the assumption of a nearly con-
stant roll rate.

With the trim center known, the time history of CR2 can be cbtained
from the plot of Cy against Cy. If sufficient oscillations are present,

the damping envelopes about the oscillation pesks can be drawn with good
accuracy. Equations (32) and (33) represent the time histories of the
damping envelopes. If use is made of the damping envelopes, equation (28)
can be written as:

R = %[(CR,maX)z + (CR,minﬂ + Op oo (1 - K2)e?M% cos 2t (36)

Thus from this equation, 032 is a sinusoidal damped oscillation about a
trim given by %Kcﬁ,max)a"' (CR,min)e] . From the period of oscillation a,

can be obtained. From equations (32) and (33) and the damping envelopes,

-]2'— log KCR,max)a - (CR,min ] = -Aot + Constant (37)

+
1 log(cR ,mMax Cr ymin

2 C G >= ANt 4 Constant (38)
R,mex = “R,min

Thus, A, and AN are obtained from the slopes of plots of

% log KCR,M)2 - (cg, min)2] and -;-1og(2:$ iggfi“z) against time.
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Figure 11 is a plot of CR2 obtained from figure 10. Except near

the end of the oscillation, where an error in the assumed trim would have
a large effect on time for the oscillation peak, the periods measured at
oscillation peaks appear quite good. If an average period of 0.280 second
is used,

=% _=11.20
% = 5280

Two special corrections were also used in evaluating the damping 7‘0'
First, since the assumed trim mey not be correct, the error would appear

as an oscillation in %KCR,max)a"" (CR,min)z] . As a result, the periods

measured at points where the oscillation cuts % CR,ma.x)2 + (CR,min)e]
would be inconsistent end differ from the periods measured at the peaks.
An indication of the trim error is given by this inconsistency of the
period. As a result an adjusted value of '%‘KCR,max)a "‘(CR,min)2:| has
been determined for each half cycle, such that the period is consistent
with the ag,ja.cent peak periods. These adjustments to

1

2 [lor,max)” + (R,uin)| ave indlcsted by the dashed lines. While this

correction is admittedly crude, it will provide & more nearly correct
damping curve.

The second correction is in consequence of the high speed and the
flight path of this particular model. As a result, the air-density
change during this plotted oscillation was significant. On the assumption
that the change in air density does not force the model oscillation, the
demping at any time during the oscillation (if the velocity change is
assumed negligible) can be written as

Mo,t = 7\o,t=0(‘5_':_'—0)

Then from equation (37)

. %1og [(CR,ma.x)a - (CR,min)a:l - 7‘0,1:—-0(';3:_20)
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Thus, this correction appears as a time adjustment. Figure 12 presents
the demping determined, including the effects of each correction. From
the slope of the lower plot in figure 12,

Mo = -0.T36

Because of the low roll rate, AA 1is small and cennot be obtained from
figure 11, since {CR min)® ~ O-

Determination of Aerodynamic Derivatives
From Stability Roots
First, equatlions are written for the differential accelerations at

two points on the missile as measured by normsl and transverse
accelerometers:

Aag = az(xa,yQ,Zz) - az(xl:Yl:zI)
=.-(X2—Xl)[ %Y"}%ﬁﬂ _(22_21);62
Lay = ay(xg,yg,ZQ) - aY(xl:yl:zl)

(xp - xl)[zliz"" = ¢9:| - (yo - Y1)¢2

These equations were derived under the same assumptions that were made in
the section "Development of Equations of Motion". Since ACy = -mAag/aAp

and ACy = mAay/qAF,

ACN=EE(2’_"1_).[ _fir__I.,;;E:[zq;] L mlzp - =)

I aApd qAF
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and

md(ep o) [ Mg eI o] mp - v
ACY-——I——[ EAE*WTB]' Ay

By use of equations (1) and (2),

é=;l?-+a.+¢ﬂ
If, then,
Cw - Cw,o Cy
= Cy o + o= R
Cw = Cy & + Cny,0 o, Cn,,
(Cy - Cy,o) ¢
C = = - 2 =.._Y
Y= B+ Cyo B c
and
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- Then,
C
. - el - B - o o8 B
d
. c
Constamt + @(z;e. ghet _(_im-;
a
o5 For+ ol B H

1 (% xl) mg Cyd  pa <_c_n_1_’g.. Cmg
Constant 4+ (%)2(—&— g CNG 'Ev—‘l' 5V C]_\]‘m + C]_\]'a' +
kP Ix 2 (kY Ix G
- 2(3) T)CN rav(E) T (ko)

The last bracketed terms of equations (39) and (40) represent the
corrections that must be made to ACy end ACY in order to obtain

linear plots of Cy against Cy. Note that the influence of the roll
cen meke the correction large even for low roll rates and small ratios
of IX to I. At high roll rates the correction may become greater than

the quantity to be determined. Figures 13 and 14 present experimental
’ plots of ACy against Cy and ACy sagainst Cy. However, for simplicity

the points were taken near the oscillation pesks (ACN points near

CNpea.k’ ACy points near CYpeak) where CN and éY are negligible.

Thus any corrections that must be made to the upper plots of figures 13
and 1k result entirely from the roll effect on Ay end ACy. The effect
of rolling on curves of Ay against Cy (upper plot, fig. 13) mskes the

curve appear nonlinear, whereas the effect on ACy plotted against Cy

(upper plot, fig. 1h4) sppears as an increase in scatter. The correction
for roll given in the preceding equations by use of estimated derivatives

f e e —_— - -

y
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reduces the scatter and removes the nonlinearities, as shown in the lower
plots of figures 13 and 14. The differences of 10 percent in slopes as
obtained in the Cy and Cy planes is not understood. The effect may

be real, resulting from different aercelastic effects on the fins of the
model, or be within the accuracy of the data.

The slope s of the curve of ACy plotted against Cy end ACY
against Cy is related to w,, Am, Ay, and AN by the equation:

- e e - 2 Y

hﬁx_(a_%)a(%-fal.)%awa-&aﬂ 'I)ma (42)

Cy,, = ‘e‘& _ i{d'.l‘)('a%) [aba + N2 - A2

For the test model, the necessary constants are:

n = 76,600
gdl 8,120
k_ o,

3 2.60
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Then using the averege of slopes from figures 13 and 14 gives
!

Cy = o.o3h1+(125.5 + 0.54 + 0.34) = L4.35
(e 4

From equation (13)

Then

Cmq_ = ]_5.5[2(%280).(-0.736) + l|--35]

Cmg- = 13.5(-13.90 + 4.35) = -129

Equation (41) can be rewritten as:

I \2
O = 2(5) 0{F) |oc? + 2% - 92 - &) r?| - et

Then

~0.0156(125.5 + 0.5% - 0.0023) - 0.00732

-1.97- 0.007 = ~1.977

 e———— —

35

(43)

(Lk)
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and

&n _Cmg _ _L.9TT _ o
acy  Cn, 4.35 "4

With cNa, and Cm!1 known, the derivative Cnp can be obtained from
o
equation (34) and is given by:

e B g O Fpe )

g, AN b

(45)

A value of %p for the test model could not be determined, since
(s

AN could not be determined with any accuracy at the low roll rates of
the test.

It should be emphasized that the biggest drawback in obtaining good
accuracy is in fsilure to determine the trim center correctly. In order
to obtain a relisble trim center, the missile should be disturbed in such
manner that K is small in magnitude, and the resonance range should be
avolded.

CONCLUDING REMARKS

An anslysis has been made of the motions of rolling missiles having
slight serodynamic asymmetries. The motions were referred to a body axis
system. The type of motion encountered by the missile is shown to be
dependent on the ratio of the rolling velocity to pitching frequency and
the menner in which the missile is disturbed. The equations of motion were
found to be useful in establishing a technique for the reduction of oscil-
lation data for rolling missiles having body-axis instrumentation. The
method was applied to experimentel results obtained from flight tests of
a rolling missile configuration.

Langley Aeronautical Leboratory,
National Advisory Committee for Aeronautics.

langley Field, Va., May 1, 1956.
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Resonance reached

0 20 40 80 80 100x10%
Altitude, t

0 | I I I |
0 20 40 60 80 100 x10°

Altitude, ft

Figure 3.- Variation of Nofap and Awfay, with altitude for a high-

speed missile. Cyy = 3.65; Cn _ -0.5; 1 % = -3; cnp = 03
dCy 2(x/a)? ONa, o
k/d = 2.60; ll-m/AFd. = 36.2-
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Figure .- Typical missile motions below roll resonance for Am/wo pos-

itive. TFor negative values of Am/ab, the sign of K 1s reversed.

Ao = &\ = 0.
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Figure 5.~ Typlcal missile motions above roll res
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Figure 6.- Envelopes of the Cr oscillations for A?\/?\o positive. For negative values
of MMM, the sign of K is reversed.

LeLe NI VOVN

h



Figure T.~

Ly NACA TN 3737
Ao/wo
3 0
-.05
‘ 38
2.-— -.
cRmax
——— e |
ACR . trim
1
0 lgllllllllllLII‘Ilngllllll|llll|
0 5 1.0 1.5 2.0 2.5 3.0
AU/UO
1.0;—-
S
B
K _
A
02—
0 JJIIIIIII'ILIIJII[I'IllJIIlIII
0 .5 1.0 1.5 2.0 2.5 3.0

Response of a rolling symmetricel missile to a trim change.




NACA TN 3737 45

/ DPeak before rocket burnout ot 9.0
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Figure 8.- Amplitude response of a rolling symmetrical missile to the
disturbance from a pulse rocket having constent thrust. N = 0; AN = 0O;

N = Pd- \/(d . (d> ( ) ( - _..) j Cp indlestes resultsnt
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Figure 10.- Plot of Cy against Cy for a rolling missile following
a pulse-rocket disturbance.
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